Forcing Boundary-Layer Transition on a Single-Element Wing in Ground Effect
نویسندگان
چکیده
منابع مشابه
Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny ai...
متن کاملEffect of free-stream turbulence on boundary layer transition.
This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based o...
متن کاملDirect Numerical Simulation of Transition in a Swept-Wing Boundary Layer
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eig...
متن کاملA Practical Method for Investigation of Aerodynamic and Longitudinal Static Stability of Wing-in-Ground Effect
The purpose of this paper is to present a fast, economical and practical method for mathematical modeling of aerodynamic characteristics of rectangular wing-in-ground effect (WIG). Reynolds averaged Navier-Stokes (RANS) equations were converted to Bernoulli equation by reasonable assumptions. Also Helmbold's equation was developed for calculation of the slope of wing lift coefficient in ground ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluids Engineering
سال: 2017
ISSN: 0098-2202,1528-901X
DOI: 10.1115/1.4037036